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SUMMARY The use of lentiviral vectors for therapeutic purposes has shown prom-
ising results in clinical trials. The ability to produce a clinical-grade vector at high
yields remains a critical issue. One possible obstacle could be cellular factors known
to inhibit human immunodeficiency virus (HIV). To date, five HIV restriction factors
have been identified, although it is likely that more factors are involved in the com-
plex HIV-cell interaction. Inhibitory factors that have an adverse effect but do not
abolish virus production are much less well described. Therefore, a gap exists in the
knowledge of inhibitory factors acting late in the HIV life cycle (from transcription to
infection of a new cell), which are relevant to the lentiviral vector production pro-
cess. The objective was to review the HIV literature to identify cellular factors previ-
ously implicated as inhibitors of the late stages of lentivirus production. A search for
publications was conducted on MEDLINE via the PubMed interface, using the key-
word sequence “HIV restriction factor” or “HIV restriction” or “inhibit HIV” or “repress
HIV” or “restrict HIV” or “suppress HIV” or “block HIV,” with a publication date up to
31 December 2016. Cited papers from the identified records were investigated, and
additional database searches were performed. A total of 260 candidate inhibitory
factors were identified. These factors have been identified in the literature as having
a negative impact on HIV replication. This study identified hundreds of candidate in-
hibitory factors for which the impact of modulating their expression in lentiviral vec-
tor production could be beneficial.

KEYWORDS cell-mediated immunity, host resistance, human immunodeficiency
virus, immunology, infection control, viral immunity, virology, virulence regulation,
virus-host interactions

INTRODUCTION

The use of viral vectors for therapeutic gene delivery capitalizes on the coevo-
lution of viruses and mammalian host cells (1), which makes them efficient gene

transfer agents. A number of naturally occurring viruses have been adapted as viral
vectors for gene therapy (2). Lentiviruses are particularly suited for this purpose
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because they can integrate into the host genome, have a large transgene capacity,
and can transduce both dividing and nondividing cells (3). Therapeutic lentiviral
vectors have encountered preclinical success in ex vivo clinical trials for the treat-
ment of leukemia (4–6) and disorders associated with hematopoietic stem cells
(7–10) and are being evaluated in early in vivo clinical trials for Parkinson’s disease
(11) and age-related macular degeneration (12). Multiple cell therapy products
underpinned by lentiviral vectors are in development, with one having been
approved for the therapy of acute lymphoblastic leukemia (13).

HIV Essential Factors

In order to replicate, viruses have evolved to exploit a large number of cellular factors,
with an estimated 9.5% of human protein-coding genes proposed to affect human immu-
nodeficiency virus type 1 (HIV-1) replication (14). These genes can be classified into four
categories: essential, auxiliary, restriction, and inhibitory factors. Essential factors, also
identified elsewhere as “dependency factors” (15, 16), are categorized as those factors for
which there is an absolute requirement for virus replication, such that the knockdown or
knockout of genes encoding essential factors will either be extremely detrimental to virus
replication or completely abolish it (Fig. 1). Essential factors accomplish cellular functions
that are required to produce viruses or are exploited by the virus to complete its life cycle.
A few examples include CD4, which is required for cellular entry of wild-type HIV-1 (17, 18);
RANBP2, which is essential for the nuclear import of the HIV-1 preintegration complex (19);
CCNT1 (cyclin T1), which is a Tat cofactor mediating TAR RNA binding (20, 21); DDX3, a
cofactor required for the Rev-RRE export function (22); RAB9, which facilitates vesicular
transport from the late endosome to the trans-Golgi network, a process implicated in HIV-1
particle assembly and export (23); and TSG101, a factor involved in budding (24, 25). The
impact of these genes on lentiviral vector production might differ from their impact on
HIV-1 replication, as in vector production, early steps in replication are bypassed either by
transfection of the crucial virus factors or by their activation in stable producer cell lines.
Furthermore, lentiviral vectors have been modified and “pseudotyped” with a non-HIV-1
envelope protein(s) to enhance their cell-specific targeting. Other host genes that have a
positive impact on, but are not absolutely required for, virus production are identified here
as auxiliary factors. In contrast to essential factors, decreasing the amounts of these factors
is expected to reduce, but not abolish, virus replication (Fig. 1).

HIV Restriction Factors

Mammalian cells also express specific factors to minimize virus replication, known as
restriction factors; they constitute a first line of defense even before the innate and

FIG 1 Categorization of cellular factors involved in virus replication and predicted impact of their knockdown/knockout on virus production. For the purposes
of this review, cellular factors involved in virus replication were classified into four categories: restriction, inhibitory, auxiliary, and essential. The anticipated
impact of the knockdown or knockout of genes in each category on subsequent virus production is indicated schematically.
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adaptive immune systems have a chance to exert their antiviral action. Through mutual
evolution, viruses have developed their own endogenous factors to counteract the
activity of these host restriction factors in an ongoing “arms race.” This is because
virion production would be greatly impaired if cellular restriction factors were not
inhibited. In the case of lentiviruses, the regulatory and accessory proteins encoded
in the lentiviral genome oppose cellular restriction factors (Fig. 2). HIV-1 is one of
the most intensely studied viruses, generating a rich literature describing cellular
factors that restrict HIV-1 replication, including APOBEC3G, BST2 (tetherin),
SAMHD1, and SERINC3/5.

APOBEC3G was identified as the principal restriction factor mediating HIV-1 restric-
tion in the absence of Vif (26). APOBEC3G is packaged into virions (26) and acts when
the virus infects a subsequent cell, causing extensive mutations in the viral genome and
terminating the life cycle at the reverse transcription step (27–29). Vif prevents
APOBEC3G incorporation into virions by depleting its intracellular levels (30–35).
APOBEC3G can also restrict the replication of incoming viruses in target cells at the
reverse transcription step (36). Other members of the ABOBEC3 family have also been
linked with HIV-1 restriction, in particular APOBEC3F (reviewed in reference 37).

BST2, also known as tetherin, was found to be a Vpu-antagonized HIV-1 restriction
factor (38, 39). BST2 localizes to lipid rafts (40), where HIV-1 budding occurs, and
prevents virion release through a tethering mechanism whereby virions at the cell
surface are linked to the cellular membrane and to each other (41). Additionally, BST2
can act as an innate sensor through the activation of NF-�B (42). Vpu acts by down-
regulating BST2 from the cell surface, thus counteracting this cellular antiviral defense
mechanism (38).

SAMHD1 is a restriction factor counteracted by Vpx (43, 44) and functions as a
deoxynucleoside triphosphate (dNTP) triphosphohydrolase (45, 46). It restricts HIV

FIG 2 Lentiviral restriction factors along with their viral antagonists. ABOBEC3G, BST2 (tetherin),
SAMHD1, SERINC3, and SERINC5 are factors that restrict lentivirus replication. (A) In lentiviral infection of
human cells, viral accessory proteins antagonize the effects of these restriction factors: APOBEC3G by Vif,
BST2 by Vpu, SAMHD1 by Vpx (in HIV-2 and simian immunodeficiency virus [SIV] only), and SERINC5 (and,
to a lesser extent, SERINC3) by Nef. (B) In third-generation lentiviral vector production and transduction,
none of the accessory proteins are present, rendering the vector susceptible to these host cell factors.
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replication by depleting the cytoplasmic pool of dNTPs necessary for reverse transcrip-
tion (47). Exogenous Vpx strongly reduces SAMHD1 in dendritic cells and macrophages
(43, 44).

SERINC5 and, to a lesser extent, SERINC3 were shown to restrict HIV-1 infectivity and
to be counteracted by Nef (48, 49). SERINC5 is localized in the plasma membrane, is
incorporated into budding virions, and acts as a restriction factor by impairing their
ability to translocate their content into the target cells’ cytoplasm. Nef prevents virion
incorporation of SERINC5 by redirecting it to an endosomal compartment (48).

The roles of these intrinsic restriction factors are well known in lentiviral infection,
but they are also present in producer cells during lentiviral vector production. Impor-
tantly, third-generation lentiviral vectors have been stripped of their accessory proteins
for increased safety, leaving the vector form of the lentivirus at the mercy of the host
cell’s restriction factors, which could have a subsequent impact on the production titer
(Fig. 2B). Helpfully, the human embryonic kidney 293 (HEK 293) cell line, frequently
used for lentiviral vector production, is known to express very low levels of the main
restriction factors acting late in the HIV-1 life cycle (APOBEC3G, BST2, and SERINC5) (50).
This means that HEK 293-derived cells constitute a better choice for lentiviral vector
production than, for example, HeLa cells, which express seven times more APOBEC3G
and 252 times more BST2 (50, 51).

HIV Inhibitory Factors

It would be surprising, of course, if a process as complex as virus inhibition could be
achieved by using only four cellular restriction factors. Therefore, this calls for another
category of cellular proteins, which have an adverse effect on virus production or
infectivity but which are not so crucial as to abolish virus production. Although such
proteins are usually referred to as restriction factors in the literature, here they are
termed inhibitory factors as they are not sufficiently critical to necessitate a direct
countermeasure from the virus in the form of regulatory or accessory proteins. Such
factors can, for example, accomplish cellular functions that indirectly inhibit virus
production or affect cell growth. Importantly, most reviews of HIV-1– cell interactions
focus only on the canonical restriction factors described above (52–57), disregarding
the inhibitory factors discussed here.

Inhibitory factors have been studied mostly in regard to virus entry, with several
factors, such as CH25H, DDX58 (RIG-I), and MX2 (MxB), being described as having an
impact on the initial steps of HIV-1 infection/replication. CH25H converts cholesterol
into 25-hydroxycholesterol, a soluble antiviral factor which broadly inhibits the growth
of enveloped viruses, including HIV-1 (58). DDX58 is a cytoplasmic viral RNA sensor that
is inhibited by the HIV-1 protease (59), while MX2 was shown to be an interferon-
induced inhibitor of HIV-1 infection (60).

A key method to identify new factors involved in viral replication is high-throughput
screening, a drug discovery process that uses automation to assay the biological or
biochemical activities of numerous drug-like compounds. It is a powerful strategy that
allows the identification of factors involved in virus replication not previously linked to
virus infection as well as the confirmation of previously established relationships. Most
high-throughput screens for genes affecting HIV-1 infection reported to date tended to
focus on essential/auxiliary factors (Table 1). Only one high-throughput screen reported
to date specifically focused on inhibitory factors (61), addressing the early steps of the
viral life cycle (virus entry to integration), as these steps are most relevant as targets for
drugs blocking early stages of infection. Therefore, there is a gap in the knowledge
concerning inhibitory factors acting late in the HIV-1 life cycle (from transcription to
infection of a new cell) (Fig. 3); such late-acting inhibitory factors, which are highly
relevant to lentiviral vector production, are much less well defined. These cellular
factors might negatively affect virus production, and conventional cell lines therefore
might not be optimal for lentiviral vector production. Assuming that such factors are
also active in the lentiviral vector production environment, it is hypothesized that this
search will lead to the identification of gene targets that could be “knocked down” or
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“knocked out” in order to increase production yields. To address this, we performed a
review of the HIV-1 literature to assess the current knowledge of these factors.

METHODS
Systematic Investigation of the Literature

This systematic review of the literature was conducted according to Preferred
Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines (62) as
much as feasible; considering that this is not a medical systematic review, portions of
the guidelines were not applicable or impractical to implement.

The research strategy is summarized in Fig. 4. A search for publications was
conducted on MEDLINE via the PubMed interface, using the keyword sequence “HIV
restriction factor” or “HIV restriction” or “inhibit HIV” or “repress HIV” or “restrict HIV” or
“suppress HIV” or “block HIV,” with a publication date up to 31 December 2016.
Published studies in any language were considered. This search term combination led
to the identification of 2,862 records; of these, PubMed identified 408 records as
reviews, and these records were excluded from the search results. A further 151 records,
not tagged as reviews, were found to be reviews, news articles, editorials, or comments

TABLE 1 Comparison of high-throughput screens for essential, auxiliary, and inhibitory factors implicated in HIV-1 replicationa

Reference Technology Targets No. of targets
HIV-1 life cycle
steps covered

No. of hits
found

445 cDNA Essential/auxiliary factors 15,000 genes Entry to release 315
15 siRNA Essential/auxiliary factors 21,121 genes Entry to infectivity 273
446 siRNA Essential/auxiliary factors 19,628 genes Entry to translation 295
440 siRNA Essential/auxiliary and

inhibitory factors
19,709 genes Entry to infectivity 232 (81)b

447 shRNA Essential factors 59,509 transcripts Entry to release 252
61 siRNA Inhibitory factors 19,121 genes Entry to translation 114
16 CRISPR-Cas9 Essential factors 18,543 genes Entry to translation 5
asiRNA, small interfering RNA; shRNA, short hairpin RNA; CRISPR-Cas9, clustered regularly interspaced short palindromic repeats and CRISPR-associated protein-9.
bA total of 232 preliminary and 81 confirmed hits.

FIG 3 Schematic showing stages in the late phase of the HIV-1 life cycle. The production of lentiviral vectors via producer cell lines, or transient transfection,
involves only the late steps of the HIV-1 life cycle. The genes identified in the literature search are identified by the step in which they are presumed to be active.
Life cycle steps depicted are transcription (step 1), posttranscription (step 2), translation (step 3), posttranslation (step 4), assembly (step 5), migration to the
cell membrane (step 6), budding (step 7), maturation (step 8), and infectivity (step 9) of the produced virions.
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on other articles and were also excluded from the search results. The titles of the
remaining 2,303 articles were screened to select papers that identified genes that have
an adverse impact on the late phase of the HIV-1 life cycle (Fig. 3), with a review of the
abstract if there was any ambiguity. Of these records, the majority were rejected
because they did not address the subject matter (1,215 records related to HIV medi-
cation or treatment; 507 about HIV biochemistry, biology, immunology, or pathology;
239 not related to HIV or related to nonhuman experiments; 89 related to public health
or epidemiology studies; and 19 related to essential factors for HIV replication), which
was unsurprising due to the broad query terms. Records related to inhibitory factors
that were found to act only early in the HIV-1 life cycle (110 records) were not included
in the results, but records related to genes for which a step in the life cycle could not
be identified were retained. Finally, 125 records were included in the analysis.

The genes identified in the selected records were termed “candidate inhibitory factors,”
as they could potentially adversely affect lentiviral vector production. Each candidate
inhibitory factor is identified with its HUGO Gene Nomenclature Committee official symbol
(63) in tables and figures; alternative names used in cited papers are listed in parentheses
in Table S1 in the supplemental material. The reference lists of the papers identified in the
search were also consulted to identify any published studies missed by the database search

FIG 4 Schematic of stages of the systematic review.
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as well as papers citing the identified records. An additional inquiry was run in Google
Scholar using the names of candidate inhibitory factors (and alternative names used in the
corresponding records) and the keyword “HIV” to find further articles confirming findings.
The PubMed gene database also provided supplemental studies that were investigated.
From these additional searches, 84 studies providing contradictory results on the status of
the candidate inhibitory factor were included and are listed in parentheses in Table S1 in
the supplemental material to provide a more complete picture of the current state of
knowledge on each of the identified genes. Some studies listed very large numbers of
genes; in these cases, only the information on genes identified in other studies was
retained. These additional searches added 273 records. Some records did not identify the
specific gene from a gene family that was being targeted, so the whole family is listed as
individual candidate inhibitory factors.

RESULTS

A total of 398 records (15, 24–28, 30–33, 35, 36, 38, 39, 42, 48, 49, 64–444) that identified
260 candidate inhibitory factors were retained from the systematic search, and the results
were tabulated as 830 reference points (see Table S1 in the supplemental material). Where
possible, the HIV-1 life cycle step(s) where the gene is described or expected to be active
is indicated. The steps covered are transcription (step 1), posttranscription (step 2), trans-
lation (step 3), posttranslation (step 4), assembly (step 5), migration to the cell membrane
(step 6), budding (step 7), maturation (step 8), and infectivity (step 9), as indicated in Fig. 3.
Two genes affected the ability of the cell to undergo apoptosis. Candidate inhibitory factors
are listed according to the steps with which they are associated in Table 2, with some
appearing in more than one category.

Each record was scrutinized to determine the techniques that led to the identifica-
tion of the candidate inhibitory factor. A ranking was established to evaluate the

TABLE 2 Restriction and candidate inhibitory factors acting in the late phase of the HIV-1 life cycle identified in the literature review

Step Factor(s)

Transcription (step 1) ACTL6A, APOL1, APOL6, ARHGEF1, ARID1A, BANP, BCL11A, BCL11B, BIRC2, CAV1, CBX3, CDKN1A, CEBPB, CHD1,
CHD3, CIITA, CNP, COMMD1, CPSF3, CTNNB1, CYLD, DDX5, DENND4A, DICER1, DKC1, DNAJA1, DNAJB1,
DNAJB6, DNAJC5, DROSHA, E2F1, EHMT2, EIF3F, EIF3L, FCGR3A, FOXP3, GADD45A, GADD45B, GADD45G,
GNA13, GRN, HDAC1, HDAC2, HDAC3, HEXIM1, HEXIM2, HIF1A, HLA-B, HMGB1, HMOX1, HSPA12A, HSPA12B,
HSPA13, HSPA14, HSPA1A, HSPA1B, HSPA2, HSPA4, HSPA5, HSPA6, HSPA8, HSPA9, HSPB1, IFI44, INTS11,
LEF1, LIF, MCM2, MIR17, MIR17HG, MIR198, MIR20A, MIR27B, MMP3, MST1R, MTA1, MTA2, MYC, NELFB,
NELFE, NFKB1, NFKBIA, POU2F1, POU2F2, PRDX1, PRDX2, PRDX4, PRKAA1, PRKAA2, PRMT6, RBPJ, RHOA,
RN7SK, RNF7, SETDB1, SIRT1, SLC40A1, SMARCA4, SMARCB1, SP3, SUPT6H, SUV39H1, TARDBP, TCF4, TFAP4,
TFCP2, TRIM11, TRIM22, UBASH3A, UBASH3B, UBP1, XRCC5, YY1, ZNF10, ZNF175, ZNF350

Posttranscription (step 2) AXIN1, DGCR8, DICER1, DUSP1, IFITM1, IFITM2, IFITM3, ISG15, MIR155, NEAT1, NFKBIA, PRMT6, SFPQ
Translation (step 3) ADAR, AGO2, APOL3, AXIN1, BST2, DDX6, DICER1, DROSHA, DUSP1, EIF2AK2, IFITM1, IFITM2, IFITM3, LSM1,

MIR106B, MIR125B1, MIR125B2, MIR150, MIR15A, MIR15B, MIR16-1, MIR16-2, MIR20A, MIR223, MIR28,
MIR29A, MIR29B1, MIR29B2, MIR29C, MIR382, MIR93, MOV10, PRKRA, RNASEL, ROCK2, SLFN11, TNRC6A,
XRN1, ZC3H12A

Posttranslation (step 4) DICER1
Assembly (step 5) AGO2, APOL1, CAV1, CAV2, CCDC8, CNP, DHX30, HERC5, HSP90AB1, IFI30, IFITM1, IFITM2, IFITM3, LGALS3BP,

MIR146A, MOV10, NEAT1, RSAD2, TRIM21, TRIM22, TSPO, XRCC5, ZC3H12A
Migration to membrane (step 6) RNF115, TRIM22
Budding (step 7) ABCA1, BST2, CC2D1A, CC2D1B, CD151, CD209, CD37, CD53, CD63, CD81, CD82, CD9, CHMP5, CLEC4M, DDX5,

HAVCR1, HAVCR2, HGS, ISG15, MIR146A, MIR888, TIMD4, TRIM22, TSG101, TSPAN7, UBA7, UBE2L6
Maturation of virions (step 8) CIITA, LGALS3BP
Infectivity (step 9) ABCA1, APOBEC3A, APOBEC3B, APOBEC3C, APOBEC3D, APOBEC3F, APOBEC3G, APOBEC3H, APOL1, CAV1,

CCDC8, CD37, CD53, CD63, CD81, CD82, CD9, DDX5, DLG1, EZR, GBP5, HSPA12A, HSPA12B, HSPA13,
HSPA14, HSPA1A, HSPA2, HSPA4, HSPA5, HSPA6, HSPA8, HSPA9, IFITM1, IFITM2, IFITM3, LGALS3BP, MAP3K5,
MARCH8, MB21D1, MIR146A, MOV10, RN7SL1, RN7SL2, RN7SL3, SERINC3, SERINC5, SPN, SUMO1, SUMO2,
TRIM37, TSPAN7

Apoptosis BCL2L1, CFLAR, KAT5, MAP3K5, XIAP
Unknown AMT, BCL2, CD164, CD3E, CD3G, CDH23, CDK13, CTR9, EIF3E, EPSTI1, GM2A, HAS2, HSF1, HSP90AA1, IFI16,

KCNK3, LPP, MECP2, MIR1236, MIR133B, MIR138-1, MIR138-2, MIR149, MIR326, MIR92A1, MIR92A2, NRON,
NTRK3, OAS1, PARP14, PINX1, RTP4, RUVBL2, SLC51A, TDRD7, TNFRSF10A, TNFRSF10D, TRAF6, TRIM15,
TRIM26, TRIM32

Inhibitory Factors in Late HIV-1 Life Cycle Microbiology and Molecular Biology Reviews

March 2018 Volume 82 Issue 1 e00051-17 mmbr.asm.org 7

http://mmbr.asm.org


perceived relative “value” of the data presented in the papers. We decided that the data
that were most likely to be informative were obtained from silencing or knockout
studies (ranked 1); data from other experimental approaches were ranked as follows:
overexpression studies (ranked 2), detection of virion incorporation of a gene product
(ranked 3), active downregulation by the virus during cell culture studies (ranked 4),
change in expression levels in HIV-infected patients (ranked 5), and any other evidence
(ranked 6) (tabulated as screen types in Table S1). The reliability of the identification of
a specific gene as a candidate inhibitory factor involved in HIV-1 inhibition could be
further be evaluated based on the number of publications citing the gene, with more
confidence being given to genes identified in multiple studies. For example, there were
101 publications that investigated the role of APOBEC3G (Table S1).

DISCUSSION

In this study, the literature was investigated to identify candidate inhibitory factors
involved in the late phase of HIV-1 replication, the manipulation of which could
potentially increase titers during lentiviral vector production. A total of 260 genes
expressing potential inhibitory factors were identified and are shown in Fig. 5, along-
side the respective step where they are thought to act in the viral life cycle. Approxi-
mately 38.1% of these candidate inhibitory factors (99/260) were identified in papers
published since 2010, indicating that this is a dynamic field of research. The literature
investigation conducted here was performed by using broad research terms, followed
by a repeated-search strategy using the gene names in two additional databases to
extend the findings. It was observed that some studies identified through these additional
searches used only the term “human immunodeficiency virus” rather than the abbreviation
“HIV” as used in the primary search, explaining why they were not originally identified.

FIG 5 Candidate inhibitory factors and the step in the late phase of the HIV-1 life cycle in which they are inferred to act. The genes identified as candidate
inhibitory factors in the literature search are indicated in the diagram near the step where they are presumed to be active in the late stages of the HIV-1 life
cycle, as derived from the literature review. Steps depicted are transcription (step 1), posttranscription (step 2), translation (step 3), posttranslation (step 4),
assembly (step 5), migration to the cell membrane (step 6), budding (step 7), maturation (step 8), and infectivity (step 9) of the produced virions. Genes lacking
an identified step are not shown.
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Despite our attempts to expand the search space, it is reasonable to assume that some
published studies and, hence, some candidate inhibitory factors may have been over-
looked. Nevertheless, with �200 genes being implicated, this systematic search is more
likely to be representative of a complex phenomenon such as the inhibition of viral
infection than limiting discussion to the small number of restriction factors (APOBEC3G,
BST2, SAMHD1, and SERINC3/5) (Fig. 2A) often cited in published reviews for the entire
HIV-1 life cycle (52–57). This literature review therefore constitutes a first step to explore
inhibitory factors exclusively in the late phase of HIV-1 replication.

Not all types of evidence identifying candidate inhibitory factors were deemed to be
of equal value. Nearly half of these candidate genes (115/260; 44.2%) were identified in
a single article and did not appear to have been validated in further studies. Further-
more, the techniques used to identify the genes varied considerably. Overexpression
studies create an “artificial” expression profile that might never exist in a normal cell,
while gene-targeted “knockdown” and “knockout” studies give results that are more
representative of the effect of a gene. Knockdown and knockout techniques were used
to identify more than half (161/260; 61.9%) of the genes found here. Only three studies
induced a complete knockout of a gene, using clustered regularly interspaced short
palindromic repeat (CRISPR)-Cas9 technology, but it is expected that many more
studies using this technology will be reported in the future. Several studies used a
combination of both knockdown and overexpression strategies to assess the effect of
a gene on HIV-1 production. Other types of evidence for identifying candidate inhib-
itory factors were the following: the packaging of a protein into virions and increased
or decreased levels either during infection or between infected patients and uninfected
individuals. While these techniques might hint at a specific role for a particular gene in
HIV-1 replication, they are not sufficient to confirm the effect. Fortunately, most genes
identified by using these techniques were also identified in studies using RNA inter-
ference (RNAi)-mediated knockdown.

The number of factors identified in this review supports the complex nature of the
virus-cell interaction in the context of HIV infection. Many of these factors could also be
at play in the context of lentiviral vector production. Understanding the role of such
factors and their impact on lentiviral vector production, either singly or in combination,
might be beneficial for improving manufacturing yields.
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